Step of Proof: bor-to-and
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
bor-to-and
:
a
,
b
:
. ((
a
b
) ~ ff)
{(
a
~ ff) & (
b
~ ff)}
latex
by ((if (((first_nat 2:n)) = 0) then (Repeat ((D (0)
)
CollapseTHENA (Auto
)
C
)) else (RepeatFor (first_nat 2:n) ((D (0)
)
CollapseTHENA (Auto
)
)))
)
CollapseTHEN ((
C
Unfold `guard` ( 0)
)
CollapseTHEN ((AutoBoolCase
a
)
CollapseTHEN (AutoBoolCase
b
)
)
)
latex
C
.
Definitions
SQType(
T
)
,
{
T
}
,
left
+
right
,
Unit
,
P
Q
,
x
:
A
B
(
x
)
,
x
:
A
B
(
x
)
,
,
,
s
=
t
,
b
,
A
,
b
,
x
:
A
.
B
(
x
)
,
t
T
,
P
Q
,
s
~
t
,
P
&
Q
Lemmas
bool
wf
,
bool
sq
,
eqtt
to
assert
,
iff
transitivity
,
eqff
to
assert
,
assert
of
bnot
,
bnot
wf
,
not
wf
,
assert
wf
origin